Torna alla pagina di Elaborazione delle Immagini
:: Appello d'esame di Elaborazione delle Immagini - 20/02/2007 ::
Esercizio 1
Data l’immagine dello sfondo a sinistra di Figura 1 e l’immagine a destra della figura 1 sullo stesso sfondo, proporre un semplice metodo per estrarre la sagoma della persona.
SOLUZIONE
Un metodo è quello di fare la differenza tra l'immagine di partenza e quella dello sfondo.
Successivamente bisogna applicare una binarizzazione a soglia ricavando una maschera. A questo punto utilizzare la maschera per ricavare il primo piano da sovrapporre al nuovo sfondo.
Rappresentazione del procedimento:
Esercizio 2
Data l’immagine rappresentata in Figure 2, calcolarne:
- l’istogramma;
- la probabilità dei livelli di grigio
- calcolare la trasformazione che equalizza l’istogramma.
SOLUZIONE
1-
- 10 livelli di intensita' 1
- 4 livelli di intensita' 0
- 4 livelli di intensita' 4
- 2 livelli di intensita' 15
Ricordiamo che l'istogramma di un'immagine digitale con livelli di intensità nella gamma [0, L-1] è una funzione discreta h(rk)=nk dove rk è il valore d'intensità k-esimo ed nk è il numero di pixel dell'immagine con intensità rk.
2-
La probabilità dei livelli di intensità è: p(rk)=nk/MN dove M e N sono le dimensioni dell'immagine.
Nel nostro caso avremo che:
l'immagine è una 4X5 e quindi
p(0) = 4/20 = 1/5 = 0.2
p(1) = 10/20 = 1/2 = 0.5
p(4) = 4/20 = 1/5 = 0.2
p(15) = 2/20 = 1/10 = 0.1
3-
L'immagine ha 16 livelli di grigio, quindi 4 bit.
la formula da utilizzare e' la seguente
con L-1 = 15
Nel nostro caso quindi dobbiamo calcolare i valori di s da 0 a 15:
S0 = 15(0,2) = 3
S1 = 15(0,2 + 0,5) = 10,5
S2 = 15(0,2 + 0,5 + 0) = 10,5
S3 = 15(0,2 + 0,5 + 0 + 0) = 10,5
S4 = 15(0,2 + 0,5 + 0,2) = 13,5
S5 = 15(0,2 + 0,5 + 0,2 + 0) = 13,5
...
...
S15 = 15(0,2 + 0,5 + 0,2 + 0,1) = 15
pero' i valori trovati sono frazionari, quindi abbiamo un istogramma non uniforme. Per completare l'equalizzazione dobbiamo arrotondare i numeri all'intero piu' vicino. Quindi otteniamo:
S0 = 3
S1 = 11
S4 = 14
S15 = 15
Esercizio 3
Spiegare che cosa si intende per “Gamma Correction” di una immagine e quali sono le sue possibili applicazioni.
SOLUZIONE
La correzione gamma è una trasformazione di potenza che ha la forma:
s = crγ
dove c e γ sono costanti positive.
Variando γ è possibile ottenere varie curve di trasformazione che permettono di migliorare la qualità dell'immagine, migliorare il contrasto e permettere una corretta visualizzazione dell'immagine sullo schermo. Immagini che non hanno un corretto valore di γ possono apparire sbiadite o troppo scure. Questo concetto vale non solo per le immagini in toni di grigio, ma anche per le immagini a colori, infatti la correzione gamma non modifica soltanto l'intensità, ma anche le percentuali di rosso, verde e blu, quindi un corretto valore di gamma permette di visualizzare i colori in modo fedele.
Le curve generate con γ > 1 hanno un effetto opposto a quelle con γ < 1. Quando γ = c = 1 otteniamo una trasformazione di identità.
In dettaglio quando γ > 1 avremo una trasformazione simile alla trasformazione di logaritmo inverso; mentre con γ < 1 avremo una trasformazione simile alla trasformazione logaritmica, dove una stretta gamma di valori scuri viene associata ad una gamma più ampia di valori chiari.
Esercizio 4
Data l’immagine della Figure 3:
- L’immagine contiene un contorno, dove? (Edge).
- Proporre un filtro che ne riveli il contorno?
- Cosa si ottiene filtrando l’immagine con il filtro proposto?
SOLUZIONE
1- L'immagine contiene un contorno verticale nella colonna formata da 5 e 4, fra la colonna di 1 e 0. Questo edge per come è strutturato assomiglia molto al modello di edge roof (solitamente associato al bordo di una qualche regione), in quanto passa da valori scuri a valori chiari e poi ritorna ancora a valori scuri.
2- per individuare l'edge verticale è possibile utilizzare l'operatore di Sobel 3x3 per gli edge verticali, cioè
-1 0 1
-2 0 2
-1 0 1
Questo tipo di operatore (insieme a Roberts e Prewitt) sfrutta le caratteristiche del gradiente per individuare l'intensità e la direzione di un edge in un punto (x,y). Il gradiente ricordiamo che ha la proprietà geometrica di puntare nella direzione di massima variazione di f nel punto (x,y).
3- filtrando l'immagine col filtro di Sobel otteniamo:
0 10 3 -13
0 15 4 -19
0 15 4 -19
0 10 3 -13
Il filtro ha fatto il suo dovere, infatti l'edge verticale viene mostruosamente risaltato.
Esercizio 5
Definire cosa si intende per SEGMENTAZIONE di una immagine. Proporre un semplice metodo per segmentare una immagine basandosi sui suoi colori.
SOLUZIONE
La segmentazione suddivide un'immagine nelle regioni o negli oggetti che la compongono. Il dettaglio della segmentazione dipende da ciò che si vuole ottenere dall'immagine, cioè il processo deve terminare quando gli oggetti o le regioni di interesse sono stati individuati.
Ci sono due possibili situazioni: si conoscono a priori le condizioni di contorno, quindi si conosce a priori la struttura dell'immagine; oppure non si conosce nulla a priori e si utilizzano dei metodi specifici per individuare le regioni di interesse.
Ci sono due approcci alla segmentazione:
- discontinuità: si partiziona un'immagine basandosi sui bruschi cambiamenti di intensità, quindi ad esempio gli edge.
- similarità: si utilizzano le tecniche di thresholding e region growing per trovare.
Il processo di segmentazione deve rispettare le seguenti cinque proprietà:
1- la segmentazione deve essere completa, quindi tutti i pixel devono appartenere a una qualche regione
2- i punti in una regione devono essere 4 o 8 connessi
3- le regioni devono essere disgiunte
4- tutti i pixel all'interno di una regione devono soddisfare una certa proprietà Q
5- le regioni adiacenti unite non devono rispettare il predicato Q, perché se così fosse non dovrebbero essere separate, ma dovrebbero costituire una regione unica
La segmentazione si basa sull'individuazione di bordi, linee e punti sfruttando soprattutto le potenzialità offerte dal calcolo della derivata prima e seconda.
L'Intensity Slicing è un processo che permette di fare una selezione dei livelli di intensità utilizzando due metodi principali:
- andando a visualizzare con un valore (esempio bianco) tutti i valori della gamma di interesse e con un altro (nero) tutte le altre intensita'.
- utilizzare una trasformazione che rende piu' chiari (o scuri) i valori della gamma desiderata e lascia invariati tutti gli altri livelli di intensita'.
Il Color Slicing e' lo stesso concetto pero' applicato ai colori. Infatti come nel caso dell'immagine in b/n evidenziare una gamma specifica di colori risulta utile per separare gli oggetti da ciò che li circonda.
L'idea e' quella di visualizzare i colori di interesse in modo che emergano dallo sfondo ed utilizzare la regione definita dai colori come maschera per ulteriori elaborazioni.
Ovviamente le trasformazioni a colori sono più complicate delle loro controparti in scala di grigio.
Un metodo semplice per ripartire un'immagine a colori e' trasformare i colori al di fuori della gamma di interesse in un colore neutrale non promittente.
In generale comunque la segmentazione basata sul colore può avvenire nei due spazi colore HSI e RGB.
Nello spazio HSI si sfrutta la tonalità in quanto caratterizza bene il colore e può essere quindi sfruttata per segmentare l'immagine; in parte la saturazione, mentre l'intensità non contiene informazioni riguardanti il colore ed è utilizzata di meno.
Nello spazio RGB invece si ottengono i risultati migliori, perché dato un insieme di punti campione rappresentativo dei colori di interesse è possibile ottenere una stima del colore medio che si vuole segmentare. Ogni pixel RGB viene quindi classificato come appartenente alla gamma specificata o al di fuori di essa; per poter fare questo confronto bisogna utilizzare una misura di similarità ed in questo caso si utilizza la distanza euclidea.
Torna alla pagina di Elaborazione delle Immagini